
icpc global sponsor
programming tools

icpc diamond
multi-regional sponsor

ICPC Europe Regionals

The 2022 ICPC
Southwestern Europe

Regional Contest

2

Mirror Solutions

A: Walking Boy Solutions of SWERC 2022/23 - Mirror

A Walking Boy
Author: Federico Glaudo
Preparation: Andrea Ciprietti

Notice that you may assume that the judge has sent a message at minute 0 and at minute 1440 and
this does not change the answer (but it simplifies the reasoning and the implementation).

Let us consider two consecutive messages sent by the judge, at times s < t.

If t− s < 120, then the judge cannot have walked the dog between the two messages.

If 120 ≤ t− s < 240, then the judge may have walked at most once between the two messages.

If 240 ≤ t− s, then the judge may have walked the dog two times between the two messages.

Hence, if ai+1 − ai ≥ 240 for some i, then the answer is YES. If ai+1 − ai ≥ 120 for two distinct
values of i, then the answer is YES. Otherwise the answer is NO.

2

B: Vittorio Plays with LEGO Bricks Solutions of SWERC 2022/23 - Mirror

B Vittorio Plays with LEGO Bricks
Author: Giovanni Paolini
Preparation: Alex Danilyuk

Each purple brick needs to be at the top of a chain of h bricks at heights 0, 1, . . . , h such that the
x coordinates of consecutive bricks differ by at most 1. In an optimal structure, we may assume
that every brick belongs to at least one of the n chains, and that any two chains that differ at some
height h′ also differ at all heights ≥ h′.

We say that two chains diverge at height h′ if their bricks coincide up to height h′ − 1 but not
at height ≥ h′. In particular, two chains with different bricks at height 0 are said to diverge at
height 0. For now, let’s pretend that bricks can partially overlap with each other, so that there are
no further constraints on how chains can be formed; at the end we will show how to account for
overlapping bricks.

For 1 ≤ l ≤ r ≤ n, denote by f(l, r) the minimum number of additional bricks needed to support
the purple bricks l, l + 1, . . . , r. We will recursively compute f(l, r). For l = r, a single chain is
needed and so f(l, r) = h.

Suppose now that l < r. For any m with l ≤ m < r, we can build a structure as follows. First, place
f(l,m) blocks to support the purple bricks l, l+1, . . . ,m. It is easy to see that we can modify such
a structure so that the chain supporting the leftmost purple brick always climbs to the left, i.e., it
consists of the bricks at positions (xl+h, 0, 0), (xl+h−1, 0, 1), . . . , (xl, 0, h). Similarly, add f(m+1, r)
bricks to support the purple bricks m+1,m+2, . . . , r, while ensuring that the chain supporting the
rightmost purple brick always climbs to the right. If we set hlr := max(0, h+1−⌈(xr−xl)/2⌉), then
it is possible to further change the leftmost and rightmost chains so that they coincide at heights
0, 1, . . . , hlr − 1 (and in fact diverge at height hlr). We obtained a valid structure to support the
purple bricks l, l + 1, . . . , r consisting of f(l,m) + f(m+ 1, r)− hlr additional bricks.

Conversely, suppose to have an optimal structure to support the purple bricks l, l+1, . . . , r. Let m
be the index of any purple brick such that the m-th and the (m+ 1)-th chain diverge at the lowest
possible height h′. In particular, all chains coincide at heights 0, 1, . . . , h′−1. Additionally, the first
m chains share no bricks with the other chains at heights ≥ h′. Note that h′ ≤ hlr, otherwise it
would not be possible to support both the l-th and the r-th purple bricks. Therefore, the number
of non-purple bricks is at least f(l,m) + f(m+ 1, r)− h′ ≥ f(l,m) + f(m+ 1, r)− hlr.

This allows us to use dynamic programming to calculate f(l, r) through the following recursive
formula:

f(l, r) = min
l≤m<r

f(l,m) + f(m+ 1, r)− hlr.

In particular, we can compute the answer f(1, n) in O(n3) time.

To conclude, we now show that any optimal structure with overlapping bricks can be modified into
an optimal structure with the same number of bricks which do not overlap. Suppose to have two
overlapping bricks with x coordinates x and x+ 1 (and same height). There can’t be any brick at
the same height and with x coordinate equal to x − 2, x − 1, x + 2, or x + 3, otherwise we could
remove one of the two overlapping bricks (it would not be needed to support the bricks above).
Then we can move the left brick to position x− 1 or the right brick to position x+ 2 (at least one
of the two works, based on the position of the bricks in the row immediately below).

3

C: Library game Solutions of SWERC 2022/23 - Mirror

C Library game
Author: Andrea Ciprietti
Preparation: Andrea Ciprietti

Sort the numbers x1, x2, . . . , xn in decreasing order, i.e. x1 ≥ x2 ≥ · · · ≥ xn. For a real number x,
let ⌊x⌋ and ⌈x⌉ denote, respectively the floor function of x (that is, the largest integer which does
not exceed x) and the ceil function of x (that is, the smallest integer which is not less than x).

Lemma. Bernardo has a winning strategy if and only if there exists an index 1 ≤ k ≤ n such that
xk > ⌊m/k⌋.

Proof. We will show the correctness of the criterion above by exhibiting a winning strategy for both
Alessia (when the condition is not satisfied) and Bernardo (when the condition is satisfied).

• First, suppose that such an index k does not exist. Alessia will play by choosing the number xi
in her i-th turn (recall that the xi’s are sorted decreasingly). Let us show that, at the beginning
of Alessia’s i-th turn, there is necessarily an interval of length xi that does not contain any
number selected by Bernardo. Indeed, Bernardo has so far selected i−1 numbers, which form i
“gaps” among the numbers 1, 2, . . . ,m. By the pigeonhole principle, one of these gaps contains
at least

⌈
m−i+1

i

⌉
=
⌊
m
i

⌋
≥ xi, where the last inequality follows from our hypothesis. Then,

Alessia can safely choose this interval.

• Now suppose that xk > ⌊m/k⌋ for some k. Bernardo will play every turn as follows: if the
interval chosen by Alessia contains at least one multiple of xk, he selects one of those multiples;
otherwise, he selects any number in the interval. Note that, every time Alessia chooses an xi
with i ≤ k, whatever interval she chooses next will contain a multiple of xk (because xi ≥ xk).
Since there are ⌊m/xk⌋ multiples of xk in [1,m], and the condition xk > ⌊m/k⌋ is equivalent
to k > ⌊m/xk⌋, again by the pigeonhole principle there will necessarily be a turn where the
multiple of xk selected by Bernardo was already selected previously.

Implementing the strategies described is not difficult, due to the generous constraints that allow for
implementations with O(nm) runtime.

Remark. In fact, if a “bad” k exists it is necessarily greater than 1, since a1 ≤ m by the problem
assumptions.

Remark. In the proofs above, we took for granted that
⌈
m−i+1

i

⌉
=
⌊
m
i

⌋
and that xk > ⌊m/k⌋ if

and only if k > ⌊m/xk⌋. The former is the well-known
⌈
a
b

⌉
=
⌊
a+b−1

b

⌋
when a, b are integers (just

replace a with m− i+1 and b with i). The latter can be proved by observing that both inequalities
are equivalent to k · xk > m.

Understanding the game’s criterion

How does one come up with Bernardo’s winning condition xk > ⌊m/k⌋? While everyone has their
own combination of methods, intuition and luck, in this problem it can be particularly useful to
focus on small values of n, and specifically on the case n = 2 (n = 1 is not interesting at all: Alessia
always wins!).

For n = 2, it might be easier to visualize what is going on, and to figure out that Bernardo wants
to select the first number so that it is as close as possible to m/2 (indeed, he wants to minimize the
largest of the two gaps that the selected number creates). After understanding this case, one can
try to generalize to other values of n.

4

D: Teamwork Solutions of SWERC 2022/23 - Mirror

D Teamwork
Author: Giovanni Paolini
Preparation: Giovanni Paolini

To start, we determine whether it is possible to solve a easy problems, b medium problems, and c
hard problems in a contest that lasts l time units. Once we are able to do this, it is easy to find the
optimal number of problems that can be solved; we will do it in the “Full solution” section below.

We are going to prove that it is possible to solve a easy problems, b medium problems, and c hard
problems if and only if the following two constraints are satisfied:

(1) l ≥ a+ b+ c+

0 if a = b = c = 0

1 if a ≥ 1

2 if a = 0 and at least one of b and c is ≥ 1

(2) 3l ≥ 2a+ 3b+ 4c+

0 if a = b = c = 0

3 if a, b, c ≥ 1

4 if at least one of a, b, c is 0 but at least one of a, b is ≥ 1

6 if a = b = 0 and c ≥ 1

These two constraints might seem complicated at first glance, but for the most part, they are quite
easy to come up with. They have a very natural interpretation in terms of available computer time
and contestant time.

Proof that the constraints are necessary

In this section, we show that constraints (1) and (2) above need to be satisfied for it to be possible
to solve the given problems in l time units.

Any problem takes 1 time unit of computer time and there are l time units in total, so l ≥ a+ b+ c.
We only need to strengthen this inequality a little bit in order to obtain constraint (1). Notice that
the computer is necessarily idle during the first time unit of the contest, because any problem’s
solution starts with at least 1 time unit of non-computer time. Therefore, if at least one of a, b, c
is ≥ 1, we must have l ≥ a+ b+ c+ 1. Similarly, if a = 0 and at least one of b and c is ≥ 1, then
any problem’s solution starts with at least 2 time units of non-computer time; thus the computer
is idle during the first 2 time units and we must have l ≥ a+ b+ c+ 2. This proves constraint (1).
Note that we could further strengthen the constraint to l ≥ a + b + c + 3 if a = b = 0 and c ≥ 1,
but such improvement is not needed (constraint (2) is stronger than (1) in this case).

Apart from computer time, our other limited resource is contestant time, of which there is a total
of 3l time units (l time units for each of the 3 contestant). Each easy problem requires 2 units of
contestant time, each medium problem requires 3 units, and each hard problem requires 4 units.
Therefore, we must have 3l ≥ 2a + 3b + 4c. We are going to strengthen this inequality to obtain
constraint (2).

If a = b = c = 0 there is nothing more to do, so suppose from now on that at least one of a, b, c is
≥ 1. Then the contest must last at least 2 time units for it to be possible to solve all problems. The
last time unit of the contest can be used by at most 1 contestant, who is completing a problem’s
solution using the shared computer. Similarly, the last 2 time units can be used by at most 2

5

D: Teamwork Solutions of SWERC 2022/23 - Mirror

contestants: one contestant can complete a problem’s solution at time l (using the computer in the
last time unit of the contest) and one can complete a problem’s solution at time l − 1 (using the
computer in the second to last time unit). In total, there are at least 3 units of contestant time
that are necessarily wasted. Therefore, we must have 3l ≥ 2a+ 3b+ 4c+ 3.

The contest can last 2 time units only if a = 1 and b = c = 0, and in this case we have 3l =
2a + 3b + 4c + 4 (so constraint (2) holds). Assume from now on that the contest lasts at least 3
time units. If at least one of a, b, c is 0, then it is not possible for all 3 contestants to start solving
a problem at time 0, because at least two contestants would finish solving a problem at the same
time; therefore, at least one additional unit of contestant time is wasted, so 3l ≥ 2a+ 3b+ 4c+ 4.
This improvement is useful for instance in the case a = 1, b = 0, c = 1, where we get 3l ≥ 10 and
so l ≥ 4 (in this case, constraint (1) only yields l ≥ 3).

Finally, we need to strengthen the inequality once more when a = b = 0 and c ≥ 1. In this case, the
contest necessarily lasts at least 4 time units. At most one contestant can start solving a problem
at time 0, and at most one other contestant can start solving a problem at time 1. This means that
at least 2 units of contestant time are wasted between time 0 and time 1, and at least 1 additional
unit is wasted between time 1 and time 2. If we add the 3 units of contestant time that are wasted
at the end of the contest, we obtain that 3l ≥ 2a+ 3b+ 4c+ 6.

Proof that the constraints are sufficient & construction of a strategy

In this section, we inductively show that constraints (1) and (2) are sufficient for it to be possible
to solve all problems. We do so by describing an explicit greedy strategy built by induction on
a+ b+ c.

We first observe that constraint (1) implies constraint (2) whenever a ≥ c+ 1. Indeed, in this case
we have a+ b+ c+ 1 ≥ 1

3(2a+ 3b+ 4c+ 4).

Suppose that b ≥ 2, or b = 1 and a ≥ c+ 1. Note that constraint (1) implies l ≥ 3. By induction,
it is possible to solve a easy problems, b− 1 medium problems, and c hard problems in l − 1 time
units, because both constraints remain satisfied (if b = 1 and a ≥ c + 1, constraint (2) is implied
by constraint (1) which remains satisfied). Given any strategy to do so, at least one contestant is
idle between time l − 3 and time l − 1, because otherwise, the computer would need to be used by
all 3 contestants within these 2 time units. Any such idle contestant can then solve the remaining
medium problem between time l − 3 and time l; this gives us a strategy to solve all problems in l
time units.

Suppose now that a ≥ 2 and c ≥ 1. Note that constraint (1) implies l ≥ 4. By induction, it is
possible to solve a − 1 easy problems, b medium problems, and c − 1 hard problems in l − 2 time
units, because both constraints remain satisfied (if c = 1, constraint (2) is implied by constraint
(1) which remains satisfied). Given any strategy to do so, at least one contestant (say, x) is idle
between time l − 4 and time l − 2, and at least one other contestant (say, y) is idle between time
l − 3 and time l − 2. Contestant x can then solve a hard problem between time l − 4 and time l,
and contestant y can solve an easy problem between time l − 3 and time l − 1.

We are left with the following four small cases (leaving out a = b = c = 0 where there is nothing to
solve).

• b = c = 0. By constraint (1), we have l ≥ a + 1. A strategy is to have the i-th easy problem
solved between time i− 1 and time i+ 1, by the first contestant if i is odd and by the second
contestant if i is even. The third contestant gets bored and leaves the contest hall to get some
pizza.

• a ≤ 1, b = 0. By constraint (2), we have 3l ≥ 4c+ 6 (regardless of whether a = 0 or a = 1), so

6

D: Teamwork Solutions of SWERC 2022/23 - Mirror

l ≥ ⌈43c+ 2⌉. If a = 1, the easy problem can be solved by the first contestant between time 0
and time 2. Then, the i-th hard problem can be solved by contestant (i mod 3) + 1 between
time ⌈43 i− 2⌉ and time ⌈43 i+ 2⌉.

• a = 0 and b = 1. By constraint (2), we have 3l ≥ 4c+7, so l ≥ ⌈43c+
7
3⌉. We can have the first

contestant solve the only medium problem between time 0 and time 3. Then, the i-th hard
problem can be solved by contestant (i mod 3) + 1 between time ⌈43 i−

5
3⌉ and time ⌈43 i+

7
3⌉.

• a = b = 1, c ≥ 1. By constraint (2), we have 3l ≥ 4c+8, so l ≥ ⌈43c+
8
3⌉. We can have the first

contestant solve the only small problem between time 0 and time 2. and the second contestant
solve the only medium problem between time 0 and time 3. Then, the i-th hard problem can
be solved by contestant (i+ 1 mod 3) + 1 between time ⌈43 i−

4
3⌉ and time ⌈43 i+

8
3⌉.

Alternative construction of a strategy

The following is a simpler greedy strategy to solve a easy problems, b medium problems, and c hard
problems in the minimum amount of time.

Consider the time units one by one, from the beginning of the contest. At the i-th time unit (for
i = 1, 2, . . .), do at most one of the following:

• if at least one hard problem remains, i ≥ 4, and at least one contestant has been idle between
time i − 4 and time i, then let one such contestant solve a hard problem between time i − 4
and time i;

• if at least one medium problem remains, i ≥ 3, and at least one contestant has been idle
between time i− 3 and time i, then let one such contestant solve a medium problem between
time i− 3 and time i;

• if at least one easy problem remains, i ≥ 2, and at least one contestant has been idle between
time i − 2 and time i, then let one such contestant solve an easy problem between time i − 2
and time i.

If more than one option applies, choose the first one that applies (i.e., prioritize harder problems
over easier problems). If no option applies at the i-th time unit, then the computer will be idle
between time i − 1 and time i (this surely happens for i = 1). Note that this strategy coincides
with the one from the previous section in the four “small” cases.

For simplicity, we only prove that the constructed strategy is optimal for a, b, c ≥ 1; the remaining
cases are left to the reader. The strategy begins by solving an easy problem between time 0 and
time 2, a medium problem between time 0 and time 3, and a hard problem between time 0 and
time 4. Then, it proceeds by solving all remaining medium problems up to time b+ 3. Afterwards,
it alternatively solves an easy and a hard problem up to time b + 2min(a, c) + 1. Finally, the
remaining easy or hard problems are solved. If a ≥ c, then only 1 unit of computer time is wasted,
so constraint (1) is tight and the strategy is optimal. On the other hand, if a ≤ c, then at most 5
units of contestant time are wasted, so constraint (2) is tight and the strategy is optimal.

Full solution

Let us now go back to the original task, which requires us to determine the maximum number of
problems n that can be solved in time l. To do so, we run a binary search on n in the interval
[0, a + b + c]. For a given candidate value of n, we greedily decide the types of problems to be
solved: first up to a easy problems, then up to b medium problems, then up to c hard problems,
until we meet the desired total number of problems n (obviously, there is no advantage in planning
to solve a problem while skipping a strictly easier one). Thanks to the previous sections, we are

7

D: Teamwork Solutions of SWERC 2022/23 - Mirror

able to determine in O(1) time whether it is possible to solve the n chosen problems. Once the
optimal value of n is found, we can print an explicit strategy in O(n) time. Overall, the complexity
of this solution is O(log(a+ b+ c) + n).

To determine whether it is possible to solve the n chosen problems, we can also greedily construct
an optimal strategy and check whether it takes at most l time units. Such a solution does not
explicitly rely on checking constraints (1) and (2).

8

E: Crossing the Railways Solutions of SWERC 2022/23 - Mirror

E Crossing the Railways
Author: Cesc Folch
Preparation: Cesc Folch

First of all, let us transform the given problem to a geometry problem. We consider the plane where
the x coordinate represents the distance of Isona from the first validating machine (remember that
Isona is always in the straight segment between the two validating machines), and the y coordinate
represents time.

Thus, the point (a, b) of the plane corresponds to being a meters away from the first validating
machine after b seconds. If we represent trains in this plane they are vertical segments from (ri, ai)
to (ri, bi).

Let us look at how is represented the fact that Isona is mj meters away from the validating machine
and starts moving at constant speed vj at time tj , and does so for sj seconds. We get a straight
segment with endpoints (mj , tj) and (mj + vj · sj , tj + sj).

So, the movement of Isona at constant speed for a period of time is represented by a straight
segment.

The constraint on the speed of isona corresponds to a constraint on the slope of the segment. Let
us suppose that a segment passes through the points (m1, t1) and (m2, t2) with t1 < t2. Since Isona
cannot run backward, it must hold m1 ≤ m2. Isona’s constant speed is vI = m2−m1

t2−t1
. From the

statement we know that 1
v ≥ vI ≥ 0, so we can write t2−t1

m2−m1
≥ v. That means that the slope of the

segment must be greater or equal then v.

From now on we will consider a segment to be valid if it does not cross any train segment (take into
account that train segments are open, so the endpoints are not considered part of the segment) and
has a valid slope (that is m1 = m2 or t2−t1

m2−m1
≥ v).

The problem is equivalent to finding the minimum number of segments that constitute a path from
x = 0 to x = m+ 1 that does not intersect any train segment. This statement is similar to a BFS
where the nodes are the valid segments and the edges the intersection points. The source node
is the segment (0, 0) − (0, s) and the target node is (m + 1, 0) − (m + 1, s). The issue is that we
have infinitely many valid segments. The following lemma allows us to consider only finitely many
segments.

Lemma. A special segment is a valid segment such that at least one of the following holds:

• It contains (0, 0) and has slope equal to v.

• It contains the upper endpoint of a train (i.e., (ri, bi)) and has slope equal to v.

• It contains two points (ri, ai) and (rj , bj) with ri < rj .

We can construct an optimal solution using only special segments.

From the previous lemma we see that we only need to consider O(n2) segments, and we can construct
the full set of segments from the lemma in time O(m ·n2 · log(n)), as for each valid segment we only
need to check if it crosses any train segment, which can be done using binary search in each rail in
total time O(m · log(n)).

But there may be O(n4) intersection points, so running a BFS on this graph is too slow. So let us see
when Isona shall change speed in an optimal solution. She may change speed at a given railway or

9

E: Crossing the Railways Solutions of SWERC 2022/23 - Mirror

between two railways. It is never convienient to change speed between the first validating machine
and the first railway or between the last railway and the second validating machine.

Lemma. Any solution using only special segments changes speed at most once between any two
railways.

Proof. Any solution changing speed twice between two rails is using a segment which is strictly
contained between two railways, hence it cannot be a special segment because, by definition, any
special segment has at least one point with coordinate x that is integer.

With this new observation, we can now proceed to describe an efficient algorithm. For each i =

1, . . . ,m, and for each segment j, we keep a value d
(i)
j that denotes the minimum number of changes

of speed that are necessary to reach this segment, starting from x = 0, considering only the region
0 ≤ x ≤ i. If we know d

(m)
j then we know the answer to the problem.

Given d
(i)
j for all segments j, we will efficiently compute d

(i+1)
j for all segments j.

Let us see how to deal with the intersections (the changes of speed) between two railways (or on
one railway).

Let us consider all the special segments that intersect both railway i and railway i+1; these segments
will be indexed by an integer j (from here on, we consider only these segments, as the other ones
are not important for the changes that happen between railway i and railway i+1). Let us identify
the j-th segment with a pair of integers (aj , bj) where aj and bj are the positions that the segment
sj has if we order the segments by the y coordinate of the crossing point with x = i and x = i+ 1
respectively. From now on we will only use the pair (aj , bj) to work with the segments.

Notice that having the pairs (aj , bj) is sufficient to tell if two segments intersect (taking care of
intersections on the railways is a technical detail we skip in this explanation). If we have two
segments j, k with aj > ak and bj < bk it means that they cross. Also if aj < ak and bj > bk, then
they cross.

For all segments j, it is trivial that d
(i+1)
j ≤ d

(i)
j . Moreover, if segment j and segment k cross, then

necessarly d
(i+1)
j < d

(i)
k + 1. These two observations allow us to compute d

(i+1)
j , but how can we do

it efficiently?

We shall use a Fenwick tree (or a segment tree) to efficiently compute the minimum over an interval.

First, for each j, we consider the crossings such that aj > ak and bj < bk. We process them in
increasing order of aj . When processing the j-th segment, we update d

(i+1)
j with the minimum over

the interval [bj + 1,∞] (if such value is smaller than the current value of d′j). Then, we update the

Fenwick with the value d
(i)
j + 1 at position bj .

The other type of crossings, those such that aj < ak and bj > bk, can be processes analogously by
considering the segments in increasing order of bj .

This allow us to process all the crossings between two railways in O(n2 · log(n)). So, at the end,
the total time complexity is O(m · n2 · log(n)).

10

F: Train Splitting Solutions of SWERC 2022/23 - Mirror

F Train Splitting
Author: Alex Danilyuk
Preparation: Alex Danilyuk

The problem is equivalent to:

Formal statement: Given a connected graph, paint its edges with several colors so that the edges
of any single color do not make the graph connected, but any 2 colors together make the graph
connected.

This is a constructive problem and there can be a lot of different approaches. We left the limitations
small on purpose, so that you could let your imagination run wild. We will describe a simple solution
which works in time proportional to the size of the input.

How can we make sure the graph is not connected? Take a vertex and remove all incident edges.
So if we paint edges incident to one vertex with color 1 and all other edges with color 2, then color
2 will not connect the graph, while colors 1 and 2 together will connect. And what about color 1
alone? It will connect the graph if and only if the chosen vertex was connected to all of the other
vertices, so if we can find a vertex that is not connected to all of the other vertices, we are done.

Unless the graph is complete, i.e., it contains all possible edges, we can find such a vertex. If, on
the other hand, the graph is complete, we can paint the edges from one vertex with two different
colors (at least one of such edges with one color and at least one of such edges with the other), and
all the other edges with the third color. You can verify that all the conditions are satisfied by this
coloring.

The complexity of this solution is O(n+m).

11

G: Another Wine Tasting Event Solutions of SWERC 2022/23 - Mirror

G Another Wine Tasting Event
Author: Andrea Ciprietti
Preparation: Andrea Ciprietti

For an interval [l, r] (1 ≤ l ≤ r ≤ 2n− 1), let w(l, r) be the number of W’s in the substring sl . . . sr.

We are going to show that x = max1≤l≤nw(l, l + n− 1) is a solution (that is, there are at least n
intervals of length ≥ n containing exactly x W’s).

Let k be an index such that w(k, k + n− 1) = x. The idea is to find n− 1 other intervals with the
same number of W’s by “sliding” the original interval [k, k + n− 1] in a clever way.

For each l = 1, 2, . . . , k − 1, let Ll be the shortest interval starting at l with w(Ll) = x. Such
interval exists because w(l, k+ n− 1) ≥ w(k, k+ n− 1) = x and moreover the length of Ll cannot
be smaller than n by definition of x. Similarly, for each r = k + n, k + n+ 1, . . . , 2n− 1, let Rr be
the shortest interval ending at r with w(Rr) = x.

We have constructed a family of n intervals: L1, L2, . . . , Lk−1, [k, k+n−1], Rk+n, Rk+n+1, . . . , R2n−1.
All of them have length ≥ n and all of them contain exactly x W’s. Are they all distinct? Clearly
Li ̸= Lj and Ri ̸= Rj whenever i ̸= j. Moreover, [k, k + n − 1] is different from all the other
intervals. Could it be that Ll = Rr? No, because that would mean that such interval is [l, r] with
l < k and k + n − 1 < r, but then [k, k + n − 1] would be strictly contained inside [l, r], violating
the minimality of Ll and Rr.

12

H: Beppa and SwerChat Solutions of SWERC 2022/23 - Mirror

H Beppa and SwerChat
Author: Andrea Ciprietti
Preparation: Lifu Jin

Instead of finding the minimum number of members that must have been online at least once
between 9:00 and 22:00, let us study the complement of that set: What is the maximum number of
members that have never been online? We have the following observations:

• Members that have never been online must be a suffix of the sequence b. It cannot happen
that member bi has been online but bi−1 has not, for 2 ≤ i ≤ n.

• Consider two members x and y who have never been online. Their relative order in a and b is
the same. Indeed, if someone else goes online the relative order of x and y in the list does not
change.

From the above observations, we deduce that the members who have not been online form a suffix
of b that is also a subsequence of a. Let p : {1, 2, . . . , n} → {1, 2, . . . , n} be the function such
that ap(x) = x; we say that a sequence s of length m is a subsequence of a if p(si−1) < p(si), for
2 ≤ i ≤ m.

It turns out that any “suffix of b that is a subsequence of a” can be a valid subset of members who
have never been online as the following construction shows. For any such suffix bt, bt+1, . . . , bn, it
could be that members bt−1, bt−2, . . . , b1 went online in this order between 9:00 and 22:00, leading
to a valid list b of last seen online at 22:00.

Thus, the answer to the problem is the length of the longest suffix of b that is also a subsequence
of a. Let us explain how to find such length quickly.

We first preprocess the sequence a to find the corresponding function p. Then, we iterate from bn
to b1. If, for some i we discover that p(bi) < p(bi−1), then we know that bi−1 must have been online,
and we denote this position i as r. In this way, br, br+1, . . . , bn is the sought longest suffix of b. The
minimum number of members that must have been online at least once between 9:00 and 22:00 is
then r − 1.

13

I: Spinach Pizza Solutions of SWERC 2022/23 - Mirror

I Spinach Pizza
Author: Gerard Orriols
Preparation: Gerard Orriols

This problem has a greedy solution. The idea is that, at any moment, if the player who has to
eat picks the triangle with smallest area among those that can be eaten in that moment, then any
triangle chosen later will have area not less than it.

Therefore if n is even, Alberto can win by choosing the smallest possible slice at each turn, since
the quantity eaten by Beatrice in the next turn will always be greater or equal and thus, since they
eat the same number of slices, Alberto will eat no more in total. On the other hand, for n odd, no
matter what slice Alberto chooses at the beginning, Beatrice can apply the explained strategy for
the remaining number of turns, which is even. In this case Alberto will eat the initial amount plus
at least the quantity Beatrice eats in the remaining turns, and therefore a total area strictly bigger
than hers.

Now we prove the above claim. More precisely, given a convex polygon with vertices P1, . . . , Pn, the
minimum area of any triangle with vertices Pi, Pj , Pk is attained by a triangle determined by two
consecutive edges in the polygon (we will call such triangles edible). Given a non-edible triangle, it
is clear that we can label its vertices P,Q and R in such a way that neither of the edges PR and QR
belong to the polygon. Then it is enough to show that we can change R by a vertex adjacent to P or
Q and the remaining triangle will have at most the initial area. Indeed, by repeating this argument
at most twice we can start with any triangle and obtain an edible triangle without increasing its
area.

Let A and B be the vertices in the same side of the line PQ as R which are adjacent to P and Q,
respectively. Then one of the triangles PQA or PQB has less area than PQR: since they all have
the common base PQ, the area is proportional to the height with respect to the line PQ. However,
if the height of R were less than that of A and B, then we would be able to write R as a convex
combination of A,B, P and Q, which contradicts the strict convexity of the polygon.

A

B

P

Q

R

14

J: Italian Data Centers Solutions of SWERC 2022/23 - Mirror

J Italian Data Centers
Author: Pedro Paredes
Preparation: Pedro Paredes

This problem is ultimately about graphs, so let’s start by translating the statement into a more
formal language using graphs. Let G = (V,E) be a graph with |V | = n vertices and |E| = m edges,
where each vertex is colored in one of three colors. The problem statement describes an operation
we shall call doubling, since in a way it “doubles” the graph. The double of G, denoted by d(G), is
a graph with 2n vertices and 2m+ n edges defined as such:

1. For each v ∈ V , the double graph d(G) contains two copies of v of the same color, v1 and v2.
There is also an edge connecting v1 and v2 in d(G).

2. For each {v, u} ∈ E: if v and u have the same color, then d(G) contains an edge between v1
and u1, and an edge between v2 and u2; otherwise, d(G) contains an edge between v1 and u2,
and an edge between v2 and u1.

Now consider applying this doubling operation k times to G. Our goal is to find the diameter of
the resulting graph, i.e. the largest distance (shortest path) between any two vertices in the graph
d(d(· · · d(︸ ︷︷ ︸

k times

G) · · ·)). Let Gi be the graph after i doubling operations, so Gi = d(d(· · · d(︸ ︷︷ ︸
i times

G) · · ·)).

Dissecting the problem

At first glance the problem sounds really hard, one has to compute the diameter of an exponentially
sized graph (2kn vertices), so we have to study the structure of the problem to gain some intuition.

Observation 1. Each vertex of G is copied 2k times in Gk, so we can describe each vertex in Gk

by a vertex in G and a length-k bitstring. For example, (v, 011) would represent ((v1)2)2, so the
second copy of the second copy of the first copy of v.

Before we continue with our study of the doubling process let’s make one definition.

Definition 1. The hypercube graph of dimension n is a graph with 2n vertices given by all length-n
bitstrings such that there is an edge between two vertices if their associated bitstrings differ in
exactly one element (i.e. if the Hamming distance between them is 1).

Observation 2. The edges in Gk between copies of a vertex v from G form an hypercube graph
of dimension k, in other words, each subgraph of Gk induced by all of the copies of a single vertex
forms an hypercube graph of dimension k.

This is easy to see inductively, but for completeness here is a proof: consider the subgraph in Gi−1

induced by all the copies of v ∈ V and assume this forms an hypercube graph of dimension i − 1.
When forming Gi notice that since all of the vertices have the same color, step 2 of the doubling
operation creates two copies of subgraph induced by the copies of v in Gi−1. The first copy has all
the vertices whose bitstring starts with a 0 in the Gi representation, and the second copy has are
all the vertices whose bitstring starts with a 1. All the vertices in the first copy differ in the first
bit from the ones on the second copy, so to form an hypercube graph of dimension i we need to add
an edge between vertices with the same i− 1 last bits, which is exactly what step 1 of the doubling
operation does.

Now that we understand the structure of copies of a single vertex, let’s describe the edges between

15

J: Italian Data Centers Solutions of SWERC 2022/23 - Mirror

copies of different vertices of G. To make our notation easier to read, we refer to a vertex from Gi

as (v, b), where v ∈ V and b is a length-i bitstring.

Observation 3. Assume that {u, v} ∈ E. Consider a vertex (u, b) from Gk, where b is a length-k
bitstring. (u, b) is connected to exactly one copy of v which is (v, b) if v and u have the same color,
or (v, b) if they have different colors, where b is the bitwise-negation of b.

We can see why this is true by noting that if v and u have the same color, then all the copies of u
will be connected to the corresponding copy of v. If v and u have different colors, then we can see
the observation by thinking inductively. Let b(i) be the length-i suffix of i. When creating Gi from
Gi−1 we go from (u, b(i−1)) to (u, b(i)) by adding bi to the beginning of b(i−1). Since u and v have
different colors, we connect (u, b(i)) to (v, bib(i−1)) = (v, b(i)).

Observation 4. Let (u1, b
1
u), (u2, b

2
u), . . . , (uℓ, b

ℓ
u) be a path in Gk. Then there is a valid path of

the same length (v1, b
1
v), (v2, b

2
v), . . . , (vℓ, b

ℓ
v) and an index i such that v1 ̸= v2 and v2 ̸= v3, . . . ,

vi−1 ̸= vi and vi = vi+1 = . . . = vℓ, so we first take all steps that move between vertices of G and
then we take only steps in copies of vi.

We obtain this by “rearranging” the steps in the first path. Given the symmetry of the graph, if
we take one step between two copies of the same vertex too early, we can take that step at the end
instead.

Computing the diameter

Let’s start by describing the distance between two vertices (u, bu) and (v, bv) from Gk, where bu and
bv are length-k bitstrings and u, v ∈ V (not necessarily connected or distinct). But first, a quick
definition:

Definition 2. Let P be a path in G between u and v. We call P an even path if the number of
multicolored edges it uses is even, i.e. the number of times it walks to a vertex of a different color
from the previous one is even. We analogously define odd paths.

Observation 5. The length of the shortest path between (u, bu) and (v, bv) is given by the shortest
of the following:

• The length of the shortest even path between u and v plus ∆(bu, bv), where ∆(x, y) represents
the Hamming distance between x and y, i.e. the number of positions at which the corresponding
bits differ.

• The length of the shortest odd path between u and v plus ∆(bu, bv).

Proof. Consider a path in Gk of length ℓ from (u, bu) to (v, bv), say (u1, b
1
u), (u2, b

2
u), . . . , (uℓ, b

ℓ
u),

where each pair of consecutive vertices is connected and (u1, b
1
u) = (u, bu) and (uℓ, b

ℓ
u) = (uv, bv).

Without loss of generality, we can assume that there is an i such that u1 ̸= u2 and u2 ̸= u3, . . . ,
ui−1 ̸= ui and ui = ui+1 = . . . = v, by Observation 4.

We can “project” this path down to G, i.e. drop all bitstring labels to obtain u1, u2, . . . , uℓ. Note
that this projected path is a path between u and v. If the projected path is an even path, then
using Observation 3 we conclude that the ith vertex is (v, bu), otherwise it is (v, bu). In the even
case, the distance between (v, bu) and (v, bv) is given by ∆(bu, bv), and in the odd case the distance
between (v, bu) and (v, bv) is ∆(bu, bv). This concludes the proof. □

Now, we can use this observation to describe the solution to the problem. First, because of the
symmetries of the doubling operation, note that given a path (u1, b

1
u), (u2, b

2
u), . . . , (uℓ, b

ℓ
u), there is

another valid path (u1, 00 . . . 0), (u2, (b
2
u)

′), . . . , (uℓ, (b
ℓ
u)

′), which is obtained by inverting all the 1

bits of b1. This means that to find the diameter of Gk we only need to look at paths that start on

16

J: Italian Data Centers Solutions of SWERC 2022/23 - Mirror

vertices of the form (v, 00 . . . 0).

Given u, v from G, let’s try to determine the b that maximizes the distance between (u, 00 . . . 0) and
(v, b). From Observation 4 and 5, we know that we either first take an even path from (u, 00 . . . 0)
to (v, 00 . . . 0), or an odd path from (u, 00 . . . 0) to (v, 11 . . . 1). Let |b| = x, i.e. the number of 1s in
b is x. Then, the distance from (v, 00 . . . 0) to (v, b) is given by x and the distance from (v, 11 . . . 1)
to (v, b) is given by k − x. Let’s denote δe(u, v) be the shortest even path between u and v, and
define δo(u, v) analogously. Then the maximum distance between (u, 00 . . . 0) and (v, b) for any b,
is given by max0≤x≤k{δe(u, v) + x, δo(u, v) + k − x}.

So here is a possible algorithm:

Algorithm. For every pair of vertices u, v from G, compute the length of the shortest even path
(δe(u, v)), and the shortest odd path between them (δe(u, v)). We can do this by running a Breadth-
First Search starting at u that also keeps track of the parity of the number of times we’ve traversed
multicolored edges. Then we compute max0≤x≤k{δe(u, v) + x, δo(u, v) + k − x} and output the
maximum of this over all pairs.

Note that this algorithm runs in time O(nm+n2k), since we need one BFS per vertex (which takes
O(nm) time) and then for each pair of vertices we need to compute max0≤x≤k{δe(u, v)+x, δo(u, v)+
k − x} (which takes O(n2k) time). This can be improved to O(nm+ n2), but that isn’t necessary
for this problem since n, k ≤ 100.

17

K: Uniform Chemistry Solutions of SWERC 2022/23 - Mirror

K Uniform Chemistry
Author: Federico Glaudo and Petr Mitrichev
Preparation: Petr Mitrichev

Small constraints

The small version of this problem, which was used in the onsite competition, had constraints n ≤
100, m ≤ 10.

The standard approach for this type of problem would be to use dynamic programming to compute
the probability that each researcher wins the prize for each possible state of the process — the set
of elements that each researcher has. However, even for the small constraints the number of such
sets can be as high as 10010, which is clearly too big for us to process them all one by one.

Therefore the key idea is to use the independence of the processes that each researcher follows.
Suppose we compute for each researcher i and each year j the probability pij that the i-th researcher
discovers element n in the j-th year. In order for them to win the SWERC prize when doing so,
the other researchers must have not discovered element n yet. The probability that researcher k
has not yet discovered element n by the j-th year can be computed as 1 −

∑
t<j pkt, and because

of the independence of different researchers, the probability that all other researchers have not yet
discovered element n is equal to

∏
k ̸=i(1 −

∑
t<j pkt), and the probability that the i-th researcher

wins the SWERC prize is equal to

∑
j

pij
∏
k ̸=i

1−
∑
t<j

pkt

Now we just need to compute the probability pij that the i-th researcher discovers element n in
the j-th year for all i and j. This can be done using dynamic programming that computes qij : the
probability that a researcher that has element n− i in the beginning (in other words, is i elements
away from the goal) discovers element n in the j-th year. The probabilities that we want are then
found as pij = qn−si,j .

From the fusion experiment definition we directly obtain:

qij =
1

i

∑
0≤k<i

qk,j−1

We can then apply this formula in increasing order of i, or in increasing order of j, to find all those
probabilities, starting from q00 = 1, qi0 = 0 for i > 0, and then apply the formula that combines
those values into our answer.

The dynamic programming has O(n2) states, and each state is processed in O(n), so its running
time is O(n3). The final formula is computed in O(n2m) for each of the m researchers, so the overall
running time is O(n2(n+m2)), which is fast enough for n ≤ 100, m ≤ 10.

Large constraints

The above solution can be optimized to run in O(n(n+m)) using relatively standard techniques, but
that still won’t be enough to solve the large version that was given in the mirror round: n ≤ 1018,
m ≤ 100. Here we need to come up with more radical improvements.

18

K: Uniform Chemistry Solutions of SWERC 2022/23 - Mirror

The first big improvement is to notice that the distance to n decreases twice every year on average,
and therefore the typical number of years needed to reach n is likely to be proportional to log n.
Moreover, for each ε there likely exists a constant C such that the number of years is below C log n
with probability 1− ε.

To prove this formally, we can notice that each year the distance to n decreases at least twice with
probability of at least 1

2 , so after k years the distance to n decreases at least twice with probability
at least 1− 1

2k
. We can choose k such that 1

2k
< ε

log2n
, and then the number of years will not exceed

k log2 n with probability at least 1− ε. This is a very simple estimate, using Bernstein inequalities
one can prove much more.

But we don’t really need a formal proof during the round, instead the intuition about the distance
decreasing twice on average can be coupled with an experiment that measures how quickly the
numbers qij described above become very small. In practice, it turns out that we can always
assume j ≤ 100 and get the required precision.

This observation improves the running time to O((n + m) log n), which is still not good enough.
We will describe two independent ways to proceed further.

The exact approach. Let us examine the recurrence for qij more closely. If we apply it repeatedly,
we end up having the following sum:

qij =
∑

0<a1<···<aj=i

j∏
k=1

1

ak

This prompts us to consider the following polynomial:

f(x) =
1

i

i−1∏
k=1

(
1 +

1

k
x

)
The coefficient next to xj−1 in this polynomial is equal to qij , because to get it we can use any of
the ways to pick j − 1 terms of the product from which we take the part with x and then we get a
product of the reciprocals of their indices, which is precisely what the sum for qij has.

So now we need to compute the first O(log n) coefficients of this polynomial quickly. Let us take its
natural logarithm (in the formal power series sense), and substitute the Taylor series for log(1+ y):

log f(x) = − log i+
i−1∑
k=1

log

(
1 +

1

k
x

)
= − log i−

i−1∑
k=1

∞∑
t=1

(−1)t

tkt
xt = − log i−

∞∑
t=1

(−1)t

t
xt

i−1∑
k=1

1

kt

Since the first O(log n) coefficients of f(x) can be found by exponentation of the formal power series
and depend only on the first O(log n) coefficients of log f(x), all we need now is a way to find the
sums of inverse powers

∑i−1
k=1

1
kt for t up to C log n.

This can be done using the Euler-Maclaurin formula, or using the following trick which is likely
equivalent to it in some sense. We denote St(a, b) =

∑b
k=a k

−t, and notice that using the Taylor
series for log(1 + y) we get:

S1(a, b) =
b∑

k=a

log

(
1 +

1

k

)
+

b∑
k=a

(
1

k
− log

(
1 +

1

k

))
= log(b+ 1)− log a+

b∑
k=a

∞∑
p=2

(−1)p

pkp
=

19

https://en.wikipedia.org/wiki/Bernstein_inequalities_(probability_theory)
https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula#Examples

K: Uniform Chemistry Solutions of SWERC 2022/23 - Mirror

= log(b+ 1)− log a+

∞∑
p=2

(−1)p

p
Sp(a, b)

Similarly for t > 1 using the Taylor series for (1 + y)−(t−1) we get:

St(a, b) =
b∑

k=a

1

t− 1

(
1

kt−1
− 1

(k + 1)t−1

)
+

b∑
k=a

(
1

kt
− 1

t− 1

(
1

kt−1
− 1

(k + 1)t−1

))
=

=
1

t− 1

(
1

at−1
− 1

(b+ 1)t−1

)
+

b∑
k=a

(
1

kt
− 1

(t− 1)kt−1

(
1− 1

(1 + 1
k)

t−1

))
=

=
1

t− 1

(
1

at−1
− 1

(b+ 1)t−1

)
+

b∑
k=a

1

(t− 1)kt−1

∞∑
p=2

(−1)p
(
t− 2 + p

p

)
1

kp
=

=
1

t− 1

(
1

at−1
− 1

(b+ 1)t−1

)
+

1

t− 1

∞∑
p=t+1

(−1)p−t+1

(
p− 1

p− t+ 1

)
Sp(a, b)

These formulas express St(a, b) using Sp(a, b) where p > t. Since for sufficiently large t St(a, b) can
be computed with good enough precision directly because 1

kt decreases very quickly, this allows to
compute St(a, b) fast for all t up to C log n, and therefore to obtain the polynomial we need and to
solve the problem.

The approximate approach. Alternatively, we can approximate our problem with its continuous
version: suppose the result of the fusion experiment was not an integer, but a uniformly distributed
real number, and we were interested in the probability to get a number less than 1 after exactly j
years if we start with i.

This yields the following formulas:

q′i1 =
1

i

q′ij =
1

i

∫ i

1
q′k,j−1dk

The integral is actually not very hard to compute, and we get

q′ij =
logj−1 i

i(j − 1)!

This approach does not give good enough approximation by itself, but we can improve on it in
the following way: suppose we want to find some number qij . Let us choose some boundary b, for
example b = 106, and for all values of i < b we can just compute qij using the original recurrence.
When i is larger than or equal to b, we will separate the process into two stages: while i is larger
than or equal to b, and when it becomes smaller, and we will use the continuous approximation
only for the first stage.

Getting from i to b in the continuous setting is the same as getting from i/b to 1, so we can use the
above formula for q′ for this.

20

K: Uniform Chemistry Solutions of SWERC 2022/23 - Mirror

To glue the two stages together, we can notice that whenever i becomes less than b, because of the
uniform choice all values of i between 0 and b− 1 are equally likely, and therefore this situation is
the same as if we had i = b on the previous step. Therefore we can use the following formula to
compute our approximate answer:

qij ≈
j∑

k=1

q′i
b
,k
qb,j−k+1

This (barely) gives good enough precision for b = 106.

Precision issues. The solutions to this problem, especially the exact approach involving formal
power series exponentiation and Taylor expansions, can easily suffer from floating-point precision
issues. We are very confident that our reference solutions are correct because we have several
different approaches, implemented in different languages, using different floating-point types, all
agree on the answers.

To achieve this, we had to make some changes that we would like to mention to make it easier to
follow in our footsteps. In the exact solution, we used the above formulas to compute St(a, b) only
for sufficiently large values of a (at least a ≥ 2), and added the first few terms directly, as that
allowed for better convergence. We used those formulas only for small values of t (t ≤ 5, or even just
t ≤ 2), as otherwise the large binomial coefficients have amplified the precision errors too much.
When computing the exponential of a formal power series using an O(n log n) approach (which
was not necessary in this problem), we found that using the identity exp(f(x)) = (exp(f(x)8))8 can
improve the precision dramatically.

In addition, we noticed that if we use the above formulas to compute St(a, b) only for a ≥ 106, then
we need them only for t = 1 and t = 2, and even for those we need only a couple of terms, making
this part of the solution really short:

S1(a, b) ≈ log(b+ 1)− log a+
1

2
S2(a, b)

S2(a, b) ≈
1

a
− 1

b+ 1

21

L: Controllers Solutions of SWERC 2022/23 - Mirror

L Controllers
Author: Stefanie Zbinden
Preparation: Stefanie Zbinden

Denote by p the number of + in s and by m the number of - in s and by tot the value p−m. We
want to figure out whether we can win the game for a single controller with values x and y on the
two buttons. If we only press the button with value x written on it, then our sum at the end is
(p −m) · x = tot · x. So if tot = 0 we can always win the game and from here on we assume that
tot ̸= 0.

Assume we press the button with value x k1 times when the symbol + comes up and k2 times when
the symbol - comes up. This means we press the button with value y p−k1 times when the symbol
+ comes up and m − k2 times when the symbol - comes up. Hence our total sum in the end is
k1 · x− k2 · x+ (p− k1)y − (m− k2)y.

We can define k = k1 − k2 and rewrite this as k · x+ (tot− k)y. Rewriting this even further gives
that the sum is 0 if and only if k(y − x) = tot · y. So if x = y we cannot win the game (recall that
we are assuming here that tot ̸= 0). If tot · y is not divisible by (y − x) we cannot win the game
either.

Further, if x ̸= y we win if and only if k = tot · y/(y − x).

Can we get such value of k? Since 0 ≤ k1 ≤ p and 0 ≤ k2 ≤ m, k = k1 − k2 can have any integer
value in the range [−m, p]. Or in other words, we can win the game if and only if tot · y/(y − x) is
an integer between −m and p.

22

M: Parmigiana With Seafood Solutions of SWERC 2022/23 - Mirror

M Parmigiana With Seafood
Author: Simon Mauras
Preparation: Simon Mauras

First, as for many tree problem, let us solve it first on chains, then generalize the solution for trees.

Game on a path

First, start with several observations on Alessandro’s strategy.

Definition (bad pair). We say that two ingredients form a bad pair if they are at odd distance
of each other.

Lemma 1. Alessandro can choose the best of the following strategies:

• First, he can include any ingredient which is a terminal ingredient at the begining of the game.

• Second, if n is even, then he can make sure to include ingredient n.

• Third, if n is odd and given a bad pair, he can always make sure that one of the two ingredient
is included in the recipe.

Proof. The first observation is easy as Alessandro plays first. For the second observation, Alessan-
dro’s strategy is to include ingredient n whenever allowed to, and otherwise to select an ingredient
which does not make n a terminal. Observe that when only 3 ingredients remain, such that n is
the middle one, then it must be Bianca’s turn, and Alessandro will be able to pick n on the next
turn. For the third observation, the same argument hold, and it must be Bianca’s turn when the
only possible moves make either x or y terminal. An alternative explaination is to look at all the
ingredients on the path between x and y (including x and y) as one very large ingredient (changing
the parity of the number of items), and to apply the second observation.

Now, we have to check whether or not Alessandro can do even better, by looking at Bianca’s
strategy.

Lemma 2. Assuming that n is odd, consider a set S of non-terminal vertices which contain no bad
pair of ingredients. Bianca can make sure that each ingredient of S is discarded.

Proof. Bianca’s strategy is (i) to select and discard ingredients from S whenever possible, and (ii)
to only select ingredients which do not make any ingredient of S terminal. Observe that ingredients
of S are not adjacent and thus (i) does not contradict (ii). To prove (ii), observe that whenever it is
Bianca’s turn the number of remaining ingredients is even. If only two ingredient remains then at
most one can be in S and (ii) holds. If the chain has four or more ingredients then it has the form

a− x− · · · − y − b

where x and y are at odd distance. In particular, either x or y is not is S, and Bianca can select
and discard the corresponding neighbour and (ii) holds. Finally, we can prove by induction that
whenever Alessandro plays, none of the terminal ingredients is in S, concluding the proof.

Game on a tree

We now move on to the same question, when the graph of ingredients is a tree. One can check that
Lemma 1 still apply, with the exact same proof. However, the proof of Lemma 2 relied on the chain
structure and does not hold for trees, as the following example shows.

23

M: Parmigiana With Seafood Solutions of SWERC 2022/23 - Mirror

11 7 10

1

2

694

583

Nodes in S colored in red. If Alessandro selects either 1 or 2, then Bianca will have to make one of
the red ingredients terminal. This is caused by the fact that there is an even number of ingredients
between red ingredients. Equivalently, this happens because there is a bad triple, as formalized in
the following Definition and Lemma.

Definition (bad triple). We say that three ingredients x, y and z form a bad triple if there exist
one indredient m whose removal would disconnect x, y and z (m is sometimes called the median),
and such that all three ingredients x, y and z are at even distance of m.

In the example above, ingredients x = 8, y = 9 and z = 10 form a bad triple, as they are all three
at distance two of their median m = 11.

Lemma 3. If n is odd and a bad triple is given, Alessandro can make sure one of the three
ingredients of the triple is included in the recipe.

Proof. If one player is forced to make one of the three ingredients a terminal, then an even number
of ingredient remains, and thus it is Bianca’s turn to play.

Finally, we show that Alessandro cannot do better than combining strategies from Lemmas 1 and
3.

Lemma 4. Assuming that n is odd, consider a set S of non-terminal vertices which contain no bad
pair and no bad triple of ingredients. Bianca can make sure that each ingredient of S is discarded.

Proof. Once again, Bianca’s strategy is (i) to select and discard ingredients from S whenever
possible, and (ii) to only select ingredients which do not make any ingredient of S terminal. To
prove that (ii) holds, one can use an induction on |S|, which is left as an exercise.

Therefore if both players play optimally, the largest index included by Alessandro is characterized
by Lemma 1 and 3. More precisely:

• if n is even then the answer is n,

• otherwise, it is the maximum between

– the index of any terminal ingredient,

– the index of any ingredient at odd distance to n,

– min(x, y) for any bad triple (x, y, n),

– min(x, y, z) for any bad triple (x, y, z) whose median is n.

In particular, this can be computed in linear time with a dfs in the tree (rooted in ingredient n).

24

N: Count Permutations Solutions of SWERC 2022/23 - Mirror

N Count Permutations
Author: Federico Glaudo and Giovanni Paolini
Preparation: Federico Glaudo

This was meant to be the hardest problem of the mirror. It required advanced knowledge in modern
combinatorics, together with some clever ideas to reach the desired precision. The solution splits
in two parts: first we obtain a nontrivial (actually, pretty hard) formula for the exact answer, then
we explain how to approximate it quickly enough.

Exact formula for the answer via Hook-length formula for skew diagrams

We will give for granted the definition of Young Diagram and Young Tableau.

As a first step, we associate to the string s a Young diagram as follows.

We construct a path, that will be the border of the Young diagram. Start with a single cell (that
will be the bottom left corner of the diagram), then iterate over the characters of s. Each time you
read >, go up. Each time you read <, go right. The path we have constructed is the border (apart
from the two long sides) of the Young diagram associated to s. See the figure, which refers to the
string s =′<> < < > ><>< <> ><′.

In this Young diagram, we say that a cell is special if it belongs to the path we have constructed.

Notice that each way to fill the special cells according to the usual law of a Young tableaux coincides
with a permutation satisfying the constraints given by s. So, counting the permutations is the same
as counting the number of Young tableaux restricted to the special cells.

25

https://en.wikipedia.org/wiki/Young_tableau

N: Count Permutations Solutions of SWERC 2022/23 - Mirror

If we were to count the number of Young tableaux on the whole Young diagram, we could apply
the hook-length formula. It turns out that there is a new formula, due to Naruse, that is valid also
for skew diagrams, that are diagrams obtained as differences of two Young diagrams (notice that
the special cells can be seen as the difference of two Young diagrams).

Refer to the original slides by Naruse and to this more recent paper by Morales, Pak, Panova for a
presentation of the formula in the general case (with proofs).

In the case we need, i.e., for border strips (this is how the paper by Morales, Pak, Panova call
the special cells) the formula simplifies a lot. Instead of stating the general formulas, which would
require the definition of excited diagram, let us state here the formula for the special case of border
strips.

Summing up these results we get the following formula.

Number of Tableaux on Border Strips (consequence of Naruse’s hook length formula):
Let λ be a Young diagram and let λ′ be its border strip (i.e., its nontrivial border, as described
above). A valid path in the λ is a sequence of adjacent cells in λ going from the bottom left corner
to the top right corner that goes only up and right. The weight of a valid path is the product of
the inverses of the hook-lengths of the cells of the path.

Let W (λ) be the sum of the weights of all valid paths on λ. The number of tableaux on λ′ is
|λ′|!W (λ) (here |λ′| denotes the number of cells of λ′).

This formula can be used to compute the answer in O(n2), which is too slow for this problem (notice
that there is also a much simpler solution with complexity O(n2)).

How to optimize the solution

Notice that the hook-length of a cell is, in general, large for cells that are far from the border.
Hence, we may expect that the contribution to the result given by path which are not close to the
border at all times is negligible. This claim is highly nontrivial and we, the judges, have no idea
of how to prove it. But experimentally it is true; for the precision required in this problem it is
sufficient to consider path that stay all the time at a diagonal distance from the border ≤ D = 500.

So, we must compute the sum, over all paths that stay at a distance ≤ D from the border of the
Young diagram. This can be done with a simple dynamic programming.

It remains to understand how to take care of the huge numbers that we are going to get. There are
fundamentally two ways:

• Instead of keeping the numbers, we keep their logarithms. But if we are given log(x) and log(y),
how do we compute the sum without computing explicitly x and y? Assume that x < y, then
we compute

log(x+ y) = log(y) + log(1 + exp(log(x)− log(y))).

• We keep the numbers as long double. Still, during our dynamic programming, the exponent
may become larger then the largest exponent admissible for long doubles. During our dynamic
programming we will keep a vector of values, denoting the sum of the weights of paths starting
from the bottom left corner and ending at one point on a fixed diagonal. At each step we
will keep D values and if we divide all of them by 2, then the final result will change by 2.
Therefore, we divide all of them by 2, until the largest one is ≤ 1. Doing this, we do not lose
too much precision and everything fits in a long double. This solution is much faster than the
previous one.

26

https://en.wikipedia.org/wiki/Hook_length_formula
https://www.emis.de/journals/SLC/wpapers/s73vortrag/naruse.pdf
https://www.emis.de/journals/SLC/wpapers/s73vortrag/naruse.pdf (slides)

